Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 13494-13508, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559936

RESUMO

Metal ions are indispensable and play an important role in living systems. Metal ions coordinated to metalloenzymes pocket activate the bound substrate and labile metal ions maintaining the ionic balance. The amount of metal ions present in various subcellular compartments of the cells is highly regulated for maintaining cellular homeostasis. An imbalance in the metal ion concentration is related to several diseases and results in serious pathological conditions. Mostly the internalized metal ions are processed in the lysosomal compartment of the cell. A delicate regulation of metal ions in the lysosomal compartment can modulate the lysosomal pH and inhibit hydrolytic enzymes, which ultimately causes lysosomal storage disorders. In the past decade, the understanding and regulation of lysosomal metal ions based on fluorometric methods have gained significant attention. In this review, we have comprehensively summarized the development of various fluorescent reporters over the past five years for a selective and sensitive estimation of lysosomal metal ion concentration. We believe this consolidated and timely review will help researchers working in the areas associated with lysosomal metal ions.

2.
J Mater Chem B ; 12(2): 489-499, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099442

RESUMO

The dysfunctions in the mitochondria are associated with various pathological conditions like neurodegeneration, metabolic disorder, and cancer, leading to dysregulated cell death. Here, we have designed and synthesized a julolidine-based molecular rotor (JMT) to target mitochondria with far-red emission accounting for mitochondrial dysfunction. JMT showed viscosity sensitivity with 160-fold enhancement in fluorescence intensity. The origin of the dark state in a lower viscous environment was investigated through density functional calculations. We have employed JMT to monitor mitochondrial dysfunction induced by nystatin using confocal and fluorescence lifetime imaging microscopy. Further, we investigated mitochondrial abnormalities under inflammatory conditions triggered by lipopolysaccharide in live HeLa cells. The cellular uptake mechanisms of JMT were studied using various endocytosis inhibitors. Moreover, we reported tracking small fluorescent molecule switching from mitochondria to the plasma membrane upon introducing mitochondrial depolarizer in cells. On treating the mitochondria potential uncoupler, JMT relocates to the cell membrane and can be utilized for understanding the interplay between mitochondria and cell membranes. Moreover, JMT was applied to stain the RBC plasma membrane isolated from human blood.


Assuntos
Corantes Fluorescentes , Doenças Mitocondriais , Humanos , Células HeLa , Viscosidade , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Doenças Mitocondriais/metabolismo
3.
Analyst ; 148(23): 5851-5855, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881949

RESUMO

Peroxynitrite (ONOO-), a highly reactive species, plays a key role in various physiological and pathological processes. Herein, a red-emitting fluorescent reporter perylenemonoimide-boronate ester (PMI-BE) was synthesized and utilized for ultrasensitive detection of ONOO-. The unique feature of PMI-BE is its nanomolar sensitivity with high selectivity towards ONOO-. Moreover, PMI-BE also detects endogenously generated ONOO- in live cells.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Ésteres , Imidas
4.
J Org Chem ; 88(11): 6765-6775, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37134254

RESUMO

In this report, we have designed and synthesized a perylene-based smart fluoroprobe (PBE) in which the perylene core has been functionalized with the boronate group at the peri-position. PBE shows a very fast and ratiometric response toward harmful organic peroxides (OPs) generated in old ethereal solvents via auto-oxidation. The response toward OPs takes place with a visible color change from green to yellow, which could be easily observed with the naked eye. The reaction between PBE and OPs involves the cleavage of the boronate group and its consequent conversion into the -OH group. The response of PBE toward OPs was monitored using UV-vis absorption, fluorescence emission, IR spectroscopy, and mass spectrometry. Additionally, we have also explored the self-assembly of PBE in an organic-aqueous solvent mixture, which shows pure white light emission (WLE) with the CIE coordinates (0.33, 0.33) in a 50% dimethyl sulfoxide-water mixture. This work clearly reveals that PBE fluoroprobe can be employed for sensitive detection of hazardous OPs present in old ethereal solvents. Moreover, the ability of PBE to generate the perfect pure WLE makes it a potential candidate for application in organic light-emitting devices.

5.
Analyst ; 148(11): 2425-2437, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194365

RESUMO

Extracellular metallic debris is deposited into the well-known 'recycle bins' of the cells named lysosomes. The accumulation of unwanted metal ions can cause dysfunction of hydrolyzing enzymes and membrane rupturing. Thus, herein, we synthesized rhodamine-acetophenone/benzaldehyde derivatives for the detection of trivalent metal ions in aqueous media. In solution, the synthesized probes exhibited a 'turn-on' colorimetric and fluorometric response upon complexation with trivalent metal ions (M3+). Mechanistically, M3+ chelation enables the appearance of a new emission band at approximately 550 nm, which verifies the disruption of the closed ring and the restoration of conjugation on the xanthene core in rhodamine 6G derivatives. Exclusive localization of the biocompatible probes at the lysosomal compartment favored the quantification of deposited Al3+. Moreover, the novelty of the work lies in the detection of Al3+ deposited in the lysosome that originated from hepatitis B vaccines, which shows their efficiency for near future in vivo applications.


Assuntos
Corantes Fluorescentes , Vacinas , Corantes Fluorescentes/toxicidade , Rodaminas , Íons , Metais , Lisossomos
6.
Anal Chem ; 95(15): 6341-6350, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014217

RESUMO

The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aß-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.


Assuntos
Doença de Alzheimer , Amiloide , Animais , Amiloide/química , Agregados Proteicos , Caenorhabditis elegans/metabolismo , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas , Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Cromonas , Lipídeos
7.
Chem Commun (Camb) ; 59(13): 1769-1772, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722395

RESUMO

Ferroptosis is a unique non-apoptotic cell death process associated with endoplasmic reticulum (ER) stress-related diseases. We have designed and synthesized a far-red emitting and ER targetable viscosity-sensitive fluorophore to track ER-phagy. Furthermore, the ER viscosity alteration during the ferroptosis process was investigated via intensity and lifetime-based spectroscopy and microscopy.


Assuntos
Estresse do Retículo Endoplasmático , Ferroptose , Estresse do Retículo Endoplasmático/fisiologia , Sondas Moleculares/metabolismo , Viscosidade , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia
8.
Talanta ; 254: 124147, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470016

RESUMO

Lysosomal labile iron detection is immensely important as it is related to various diseases like Alzheimer's disease, Huntington's disease, Parkinson's disease, and cell apoptosis like ferroptosis. The fluorescent-based detection methods are preferred due to their sensitive, non-invasive, and spatial-temporal detection in biological samples. However, this remains a great challenge due to the lysosomal compartment being acidic alters the photophysical properties of the probe. Herein, we have rationally designed and synthesized multi-component naphthalimide-based fluorescent marker with preferred optical properties and bio-compatibility for selective detection of labile iron present in the lysosomal compartment. The synthesized probe was characterized structurally and optically by NMR, mass spectrometry, UV-visible, and fluorescence spectroscopy. The developed probe with an appropriate linking strategy turns out to be tolerant to fluorescence alternation in lysosomal pH. The probe exhibits great selectivity and high sensitivity for Fe(III) with limit of detection of 0.44 µM and is also able to detect Fenton-type reactions. Further, the probe has been successfully applied for lysosomal imaging and detecting labile Fe(III) present in the lysosomal lumen of the live cells.


Assuntos
Corantes Fluorescentes , Ferro , Corantes Fluorescentes/química , Ferro/química , Naftalimidas/química , Diagnóstico por Imagem , Espectrometria de Fluorescência , Lisossomos/química
9.
ACS Appl Mater Interfaces ; 14(50): 55957-55970, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36479867

RESUMO

Light, as an external stimulus, has begun to engage a phenomenal role in the diverse field of science. Encouraged by recent progress from biology to materials chemistry, various light-responsive fluorescent probes have been developed. Herein, we present a 1,8-naphthalimide-based probe NIT-NO2 capable of releasing nitric oxide (NO) along with the formation of fluorescent organic nanoparticles (FONs) upon exposure to near-visible UV light. By synthesizing the photoproduct NIT-OH, we unveiled that initially NIT-NO2 released NO and converted to NIT-OH, while prolonged irradiation led to the formation of FONs that is corroborated by the red-edge excitation shift as well as microscopic investigation. Finally, we have successfully applied NIT-NO2 and NIT-OH for specific labeling of lipid droplets and plasma membranes, respectively, and demonstrated the switching from lipid droplets to plasma membranes by using light as a stimulus. These two probes show unique imaging applications inside the cells depending on the polarity and hydrophobicity of the environment. This work paves a fascinating way for the generation of excitation-dependent FONs from a small organic fluorophore and highlights its potency as an exclusive imaging tool.


Assuntos
Corantes Fluorescentes , Nanopartículas , Óxido Nítrico , Dióxido de Nitrogênio , Gotículas Lipídicas
10.
Chem Sci ; 13(44): 12987-12995, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425508

RESUMO

Fluorescent probes for specific inter-organelle communication are of massive significance as such communication is essential for a diverse range of cellular events. Here, we present the microviscosity-sensitive fluorescence marker, Quinaldine Red (QR), and its dual organelle targeting light-up response in live cells. This biocompatible probe was able to localize in mitochondria and nucleolus simultaneously. While QR was able to sense the viscosity change inside these compartments under the induced effect of an ionophore and ROS-rich microenvironment, the probe's ability to stain mitochondria remained unperturbed even after protonophore-induced depolarization. Consequently, a systematic quantification was performed to understand the alteration of microviscosity. Similar behavior in two distinct organelles implied that QR binds to metaxin-2 protein, common to mitochondrial and nucleolar proteomes. We believe this is the first of its kind investigation that identifies the inter-organelle communications marker and opens up a new dimension in this field.

11.
Chem Rec ; 22(11): e202200035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35801859

RESUMO

The intracellular physical parameters i. e., polarity, viscosity, fluidity, tension, potential, and temperature of a live cell are the hallmark of cellular health and have garnered immense interest over the past decade. In this context, small molecule organic fluorophores exhibit prominent useful properties including easy functionalizability, environmental sensitivity, biocompatibility, and fast yet efficient cellular uptakability which has made them a popular tool to understand intra-cellular micro-environmental properties. Throughout this discussion, we have outlined the basic design strategies of small molecules for specific organelle targeting and quantification of physical properties. The values of these parameters are indicative of cellular homeostasis and subtle alteration may be considered as the onset of disease. We believe this comprehensive review will facilitate the development of potential future probes for superior insight into the physical parameters that are yet to be quantified.


Assuntos
Corantes Fluorescentes , Organelas , Viscosidade
12.
J Mater Chem B ; 10(26): 5071-5085, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730682

RESUMO

The global burden of liver damage and renal failure necessitates technology-aided evolution towards point-of-care (POC) testing of metabolic markers. Hence in the prevalence of current health conditions, achieving on-site detection and quantifying serum albumin (SA) can contribute significantly to halting the increased mortality and morbidity rate. Herein, we have rationally designed and synthesized far-red emitting, solvatofluorochromic styryl chromone (SC) derivatives SC1 and SC2, and SC2-conjugated fluorescent magnetic nanoparticles (SCNPs) for sensing SA with a fluorogenic response via interacting at an atypical drug binding site. In solution, the highly sensitive and selective fluorogenic response was evaluated by the prominent amplification and blue-shift in the emission maxima of the probes from deep red to dark yellow through an intermediate orange emission. The transformation of the fluorogen into a fluorophore was manifested through spectroscopic measurements. The stabilization of the probes at protein pockets was ascribed to the non-covalent interactions, such as H-bonding, cation-π, and hydrophobic interactions, as unveiled by docking studies. The practical applications revealed the novelty of SC derivatives through (a) the capability to detect SA isolated from real blood samples via a turn-on fluorescence response; (b) the design of a simple, cheap, and portable test-strip using a glass-slide loaded with solid-state emissive SC2, which provided differential emission color of the SC2-HSA complex in solution and the solid-state with increasing concentration of HSA. Moreover, a smartphone-based color analysis application was employed to obtain the ratio of green and red (G/R) channels, which was utilized for quantitative detection of HSA; (c) the biocompatibility of the SC1 was ascertained through confocal laser scanning microscopic imaging (CLSM). Detailed investigation showed that SC1 could entirely localize in the mitochondria and evolve as a promising biomarker for distinguishing cancer cells from normal cells. Additionally, the validation of uncommon binding of SC1 and SC2 between domains I and III was determined using competition experiments with a known site-specific binder and molecular docking studies. This unique property of the probes can be further exploited to understand the cellular intake of HSA-drug complexes in the multifaceted biological system. These results find the utility of SC derivatives as small molecule-based chemosensors for at-home SA detection and as a biomarker for cancer.


Assuntos
Cromonas , Nanoconjugados , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Albumina Sérica , Espectrometria de Fluorescência
13.
J Mater Chem B ; 10(28): 5352-5363, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35583595

RESUMO

The rich chemistry of solution-processable red and near-infrared (NIR) organic emitters has emerged as an attractive and progressive research field because of their particular applications in organic optoelectronics and bioimaging. Also, one can see that the research area of perylene monoimide-based red and NIR-emissive fluorophores is underexplored, which prompted us to design and synthesize three anthracene-conjugated PMI dyes exhibiting strong emission in the red and NIR window in solution. Three PMI-based fluorophores were synthesized via conjoining anthracene and donor moieties (-Ph, -N,N-PhNMe2) with a PMI core via an acetylene linkage at the peri-position, which helped to attain extensive electronic conjugation, which was reflected in red and NIR-emission in solution. The key molecular features to be highlighted here are: all three dyes are strongly emissive in solution, as unveiled by the excellent absolute fluorescence QYs; and they possess tuneable emission properties, guided by the donor strength and a profound Stokes shift (100-200 nm). The three fluorescent dyes demonstrated appreciable singlet-oxygen (1O2) sensitivity when photoirradiated with methylene blue (MB) in solution, showing a substantial blue-shift in emission in a ratiometric manner. Further, the treatment of dye-MB solution with α-tocopherol (1O2 scavenger) validated the presence of 1O2 as the only oxidizing species generated by MB in solution. Computational investigations gave insight into the twisting of donor moieties in their ground-state optimized geometries, the modulation of the FMO energy gap, and the thermodynamic feasibility of the 1O2 reaction. Finally, via taking advantage of the red and NIR-emission, we successfully utilized one of the fluorophores as a lipid-droplet marker for bioimaging in HepG2 cells.


Assuntos
Corantes Fluorescentes , Oxigênio Singlete , Antracenos , Corantes Fluorescentes/química , Lipídeos , Oxigênio
14.
RSC Adv ; 12(22): 13950-13970, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558844

RESUMO

Metal ion plays a critical role from enzyme catalysis to cellular health and functions. The concentration of metal ions in a living system is highly regulated. Among the biologically relevant metal ions, the role and toxicity of aluminium in specific biological functions have been getting significant attention in recent years. The interaction of aluminium and the living system is unavoidable due to its high earth crust abundance, and the long-term exposure to aluminium can be fatal for life. The adverse Al3+ toxicity effects in humans result in various diseases ranging from cancers to neurogenetic disorders. Several Al3+ ions sensors have been developed over the past decades using the optical responses of synthesized molecules. However, only limited numbers of water-soluble optical sensors have been reported so far. In this review, we have confined our discussion to water-soluble Al3+ ions detection using optical methods and their utility for live-cell imaging and real-life application.

15.
Front Chem ; 10: 840297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360540

RESUMO

The cellular physiochemical properties such as polarity, viscosity, and pH play a critical role in cellular homeostasis. The dynamic change of lysosomal viscosity in live cells associated with different environmental stress remains enigmatic and needs to be explored. We have developed a new class of Julolidine-based molecular viscometers with an extended π-conjugation to probe the lysosomal viscosity in live cells. High biocompatibility, pH tolerance, and the fluorogenic response with far red-emission (>600 nm) properties make these molecular viscometers suitable for live-cell fluorescence imaging in Caenorhabditis elegans. Among these probes, JIND-Mor is specifically designed to target lysosomes via simple modification. The real-time monitoring of lysosomal viscosity change under cellular stress was achieved. We believe that such a class of molecule viscometers has the potential to monitor lysosomal health in pathogenic conditions.

16.
Dalton Trans ; 50(41): 14576-14594, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34590653

RESUMO

To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 µM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.


Assuntos
Compostos Organosselênicos
17.
ACS Omega ; 6(1): 28-37, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458456

RESUMO

The spatiotemporal distribution of intracellular physical parameters of a live cell is heterogeneous and complex. Measuring physical properties inside given cellular compartments (organelles) is challenging and important for therapy and diagnostics. The tiny volume of a single cell and even tinier organelles are not accessible by classical measuring devices. The microenvironment inside an organelle vastly controls the outcome of any biochemical and biophysical processes taking place inside it, which is crucial for the overall cellular health. Therefore, it is very important to understand the microenvironmental physical properties inside cellular organelles. Moreover, specific alterations of such microenvironmental properties were observed in the disease condition, making them a diagnostic hallmark. With this high demand, small-molecule organic fluorophores are emerging as the most successful tool due to their small relative size, bioavailability, and ease of functionalization. In this mini-review, the development of micropolarity-sensitive small organic fluorophore with the capability of targeting a specific cellular organelle has been discussed. Here, we have highlighted the strategies of targeting a specific organelle, the micropolarity, and the challenges and prospects of the field.

18.
Anal Chem ; 92(15): 10336-10341, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635722

RESUMO

The misfolding and aggregation of proteins leading to amyloid formation has been linked to numerous diseases, necessitating the development of tools to monitor the fibrillation process. Here, we report an intramolecular charge transfer (ICT) dye, DMNDC, as an alternative to thioflavin-T (ThT), most commonly used for monitoring amyloid fibrils. Using insulin as a model protein, we show that DMNDC efficiently reports on the kinetics of fibril formation. An approximately 70 nm hypsochromic shift along with a large enhancement in emission intensity was observed upon binding of DMNDC to protein fibrils. The aggregation kinetics of insulin were not significantly affected in the presence of DMNDC, suggesting that DMNDC does not inhibit insulin aggregation. Additionally, the efficient cellular internalization and low toxicity of DMNDC make it highly suited for sensing and imaging of amyloid fibrils in the complex biological milieu.


Assuntos
Amiloide/química , Corantes Fluorescentes/química , Insulina/química , Estrutura Molecular , Agregados Proteicos , Ligação Proteica
19.
Analyst ; 145(12): 4335-4340, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32377662

RESUMO

Rapid 'in-field' detection of environmentally hazardous organophosphorus and nitro-containing pesticides is highly essential due to the lethal effects caused by the inhibition of the activity of acetylcholinesterase (AChE). In our present study, we demonstrate a novel sensing approach for the simultaneous analysis of five widely used pesticides (methyl parathion, pendimethalin, dicloran, trifluralin, and PCNB) based on the Meisenheimer complex formation between polynitro aromatic compounds (pesticides) and a nucleophile. This colorimetric determination of pesticides involves the use of an ionic liquid, tetrabutylammonium hydroxide (TBAOH), as the nucleophile, which is titrated against different concentrations of pesticides. The addition of TBAOH to the solutions of pesticides results in the formation of intensely colored complexes, which are visualized using UV-vis and NMR spectroscopies allowing the identification of new bands and peaks corresponding to the formation of Meisenheimer complexes. The limit of detection (LOD) for targeted pesticides was found to be in the range of 0.67-10 µM. Furthermore, the practical application of this method is demonstrated by developing different paper-based sensors. Therefore, the strategy proposed here not only serves as a valuable tool that allows unskilled people to detect hazardous pesticides in agricultural products 'on-site' but also offers a fast and convenient protocol for the identification of dangerous nitro-containing polyaromatic groups like nitro explosives.

20.
J Photochem Photobiol B ; 206: 111848, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203725

RESUMO

A lysosome specific, pH tolerant, and polarity-sensitive fluorescent probe (LyPol) is designed and synthesized for the determination of lysosomal polarity in live cells. LyPol possesses an intramolecular charge transfer (ICT) properties with high quantum yield in water and in other polar solvents such as methanol, ethanol, dimethyl sulfoxide, acetonitrile, etc. The fluorescence maxima and lifetime increase linearly with a non-specific manner with an increase in the polarity of its surrounding environment. A morpholine group connected with an alkyl linker acts as a lysosome directing moiety, which is attached to the fluorescent core of LyPol. The selective localization of LyPol inside the lysosome was confirmed with live-cell confocal imaging. Further, the spectral scanning confocal technique was utilized to determine the emission spectrum of LyPol inside lysosome, and the polarity turns out to be quite lower as compared to water. Moreover, the combined spectroscopic and live-cell microscopy confirms that the interior of the lysosome is significantly non-polar in cancer cells compared to normal cells. We believe that this report on the measuring polarity inside the biological system with a solvatofluorochromic probe will be of immense interest to researchers working in the multidisciplinary area of biophysics, microscopy, chemical biology, and organelle biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...